viernes, 17 de julio de 2009

Sonido

EL SONIDO Y LAS ONDAS
Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío. A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación. Los conceptos generales sobre ondas sirven para describir el sonido, pero, inversamente, los fenómenos sonoros permiten comprender mejor algunas de las características del comportamiento ondulatorio.
Los jugadores de dominó, como distracción complementaria, colocan las fichas del juego en posición vertical, una al lado de otra, a una distancia inferior a la longitud de las fichas formando una hilera. Cuando se le da un impulso a la ficha situada en uno de los extremos se inicia una acción en cadena; cada ficha transmite a su vecina el impulso recibido, el cual se propaga desde un extremo a otro a lo largo de toda la hilera. En términos físicos podría decirse que una onda se ha propagado a través de las fichas de dominó. La idea de onda corresponde en la física a la de una perturbación local de cualquier naturaleza que avanza o se propaga a través de un medio material o incluso en el vacío.
Algunas clases de ondas precisan para propagarse de la existencia de un medio material que, al igual que las fichas de dominó, haga el papel de soporte de la perturbación; se denominan genéricamente ondas mecánicas. El sonido, las ondas que se forman en la superficie del agua, las ondas en muelles o en cuerdas, son algunos ejemplos de ondas mecánicas y corresponden a compresiones, deformaciones y, en general, a perturbaciones del medio que se propagan a través suyo. Sin embargo, existen ondas que pueden propasarse aun en ausencia de medio material, es decir, en el vacío. Son las ondas electromagnéticas o campos electromagnéticos viajeros; a esta segunda categoría pertenecen las ondas luminosas.
Independientemente de esta diferenciación, existen ciertas características que son comunes a todas las ondas, cualquiera que sea su naturaleza, y que en conjunto definen el llamado comportamiento ondulatorio, esto es, una serie de fenómenos típicos que diferencian dicho comportamiento del comportamiento propio de los corpúsculos o partículas.
EL MOVIMIENTO ONDULATORIO
El tipo de movimiento característico de las ondas se denomina movimiento ondulatorio. Su propiedad esencial es que no implica un transporte de materia de un punto a otro. Así,no hay una ficha de dominó o un conjunto de ellas que avancen desplazándose desde el punto inicial al final; por el contrario, su movimiento individual no alcanza más de un par de centímetros. Lo mismo sucede en la onda que se genera en la superficie de un lago o en la que se produce en una cuerda al hacer vibrar uno de sus extremos. En todos los casos las partículas constituyentes del medio se desplazan relativamente poco respecto de su posición de equilibrio. Lo que avanza y progresa no son ellas, sino la perturbación que transmiten unas a otras. El movimiento ondulatorio supone únicamente un transporte de energía y de cantidad de movimiento.
Tipos de ondas
Junto a una primera clasificación de las ondas en mecánicas y electromagnéticas, es posible distinguir diferentes tipos de ondas atendiendo a criterios distintos.
En relación con su ámbito de propagación las ondas pueden clasificarse en:
Monodimensionales: Son aquellas que, como las ondas en los muelles o en las cuerdas, se propagan a lo largo de una sola dirección del espacio.
Bidimensionales: Se propagan en cualquiera de las direcciones de un plano de una superficie. Se denominan también ondas superficiales y a este grupo pertenecen las ondas que se producen en la superficie de un lago cuando se deja caer una piedra sobre él. Atendiendo a la periodicidad de la perturbación local que las origina, las ondas se clasifican en:
Periódicas: Corresponden a la propagación de perturbaciones de características periódicas, como vibraciones u oscilaciones que suponen variaciones repetitivas de alguna propiedad. Así, en una cuerda unida por uno de sus extremos a un vibrador se propagará una onda periódica.
No periódicas: La perturbación que las origina se da aisladamente y en el caso de que se repita, las perturbaciones sucesivas tienen características diferentes. Las ondas aisladas, como en el caso de las fichas de dominó, se denominan también pulsos. Según que la dirección de propagación coincida o no con la dirección en la que se produce la perturbación, las ondas pueden ser:
Longitudinales: El movimiento local del medio alcanzado por la perturbación se efectúa en la dirección de avance de la onda. Un muelle que se comprime da lugar a una onda longitudinal.
Transversales: La perturbación del medio se lleva a cabo en dirección perpendicular a la de propagación. En las ondas producidas en la superficie del agua las partículas vibran de arriba a abajo y viceversa, mientras que el movimiento ondulatorio progresa en el plano perpendicular. Lo mismo sucede en el caso de una cuerda; cada punto vibra en vertical, pero la perturbación avanza según la dirección de la línea horizontal. Ambas son ondas transversales.
La propagación de las ondas
El mecanismo mediante el cual una onda mecánica monodimensional se propaga a través de un medio material puede ser descrito inicialmente considerando el caso de las ondas en un muelle. Cuando el muelle se comprime en un punto y a continuación se deja en libertad, las fuerzas recuperadoras tienden a restituir la porción contraída del muelle a la situación de equilibrio. Pero dado que las distintas partes del muelle están unidas entre sí por fuerzas elásticas, la dilatación de una parte llevará consigo la compresión de la siguiente y así sucesivamente hasta que aquélla alcanza el extremo final.
En las ondas en la superficie de un lago, las fuerzas entre las moléculas de agua mantienen la superficie libre como si fuera una película tensa. Tales fuerzas de unión entre las partículas componentes son las responsables de que una perturbación producida en un punto se propague al siguiente, repitiéndose el proceso una y otra vez de forma progresiva en todas las direcciones de la superficie del líquido,lo que se traduce en el movimiento de avance de ondas circulares.
Como puede deducirse del mecanismo de propagación descrito, las propiedades del medio influirán decisivamente en las características de las ondas. Así, la velocidad de una onda dependerá de la rapidez con la que cada partícula del medio sea capaz de transmitir la perturbación a su compañera. Los medios más rígidos dan lugar a velocidades mayores que los más flexibles. En un muelle de baja constante elástica k una onda se propagará más despacio que en otra que tenga una k mayor. Lo mismo sucede con los medios más densos respecto de los menos densos.
Ningún medio material es perfectamente elástico. Las partículas que lo forman en mayor o menor grado rozan entre sí, de modo que parte de la energía que se transmite de unas a otras se disipa en forma de calor. Esta pérdida de energía se traduce, al igual que en el caso de las vibraciones, en una atenuación o amortiguamiento. Sin embargo, el estudio de las ondas en las condiciones más sencillas prescinde de estos efectos indeseables del rozamiento.
Magnitudes características del movimiento ondulatorio
Una onda armónica es la producida por la propagación de una vibración armónico simple. Cada punto del medio que es alcanzado por la perturbación describe un movimiento armónico simple que va pasando de una partícula a otra. Mientras que el punto inicial o foco que origina la vibración mantenga su movimiento, las diferentes partículas del medio estarán oscilando en torno a sus posiciones de equilibrio, constituyendo en conjunto una serie de osciladores armónicos cuyas vibraciones están tanto más retrasadas o desacompasadas respecto de la del foco, cuanto mayor sea la distancia a él, o lo que es lo mismo, cuanto más tiempo tarde la perturbación en llegar hasta ellos.
Las características del movimiento vibratorio armónico simple (M.A.S.) en un punto del medio definen también las características de la onda correspondiente en ese punto. Así el estado de vibración o de perturbación del medio viene determinado por la elongación; el periodo T de la onda coincide con el periodo del M. A. S. que se propaga, es decir, con el tiempo que emplea una cualquiera de las partículas del medio en efectuar una oscilación completa; la frecuencia fes la inversa del periodo f = 1 IT y representa el número de oscilaciones por segundo. La amplitud A representa el máximo desplazamiento que experimenta una partícula del medio respecto de su posición de equilibrio.
La propagación de una onda armónica en una cuerda da lugar a una sinusoide que avanza a lo largo de ella. A diferencia del M.A.S. el movimiento ondulatorio se propaga o progresa a través del medio. Ello permite introducir una nueva magnitud característica que es exclusiva de este tipo de movimientos y que se denomina longitud de onda . Si en un instante dado se sacara una fotografía del aspecto que presenta la cuerda por la que se propaga una onda armónica, el resultado sería una línea sinusoidal que constituye el perfil de la onda en ese instante. Otra fotografía tomada un instante posterior mostraría que la sinusoide ha avanzado.
En cualquier caso, la altura de la cuerda tomada con su signo (altura que en este tipo de ondas mide la magnitud o el estado de perturbación) se repite a intervalos iguales de distancia, cada uno de los cuales constituye una longitud de onda. La longitud de onda es, pues, la distancia que separa dos puntos sucesivos del medio que se encuentran en el mismo estado de perturbación. Coincide con el espacio que recorre la onda durante un intervalo de tiempo igual a un periodo, es decir,
espacio = velocidad x tiempo
λ = v . T (13.1)
Donde v es la velocidad, supuesta constante, de avance de la perturbación. Expresada en términos de frecuencia,la ecuación anterior toma la forma:
λ = v/f (13.2)
e indica que la longitud de onda λ y la frecuencia f son dos magnitudes inversamente proporcionales, de modo que cuanto mayor es una tanto menor es la otra.
LA ECUACION DE ONDA
El movimiento ondulatorio puede expresarse en forma matemática mediante una ecuación que describa un movimiento vibratorio avanzando por un medio. Para ello es preciso partir de la ecuación que define la oscilación del foco u origen de la perturbación. Si el movimiento es armónico simple su ecuación correspondiente será:
Y = A . sen ω t
Y = A . sen (2.π.ft)
Donde la elongación se representa, en este caso, por la letra Y, pues en ondas transversales, como sucede en las cuerdas, equivale a una altura.
Dado que la perturbación avanza a una velocidad v,en recorrer una distancia r demandará un tiempo:
t´ = r/v
Eso significa que el estado de perturbación de cualquier punto P situado a una distancia r del foco O coincidirá con el que tenía el foco t´ segundos antes. Se trata de un tiempo de retardo que indica en cuánto se ha retrasado la perturbación al llegar a P respecto del foco.
Por tanto, si en la ecuación de la elongación que describe la situación del foco, se cambia t por t-t´ se obtiene una ecuación que describe el estado de perturbación del punto P:
Y = A.sen ω (t - r/v)
Dado que t y r hacen referencia a instantes genéricos y distancias genéricas respecto del foco O,la anterior ecuación describe el estado de perturbación del medio, medido por la altura Y en cualquier punto y en cualquier instante, lo que constituye una buena descripción matemática de una onda armónica. El argumento de la función seno correspondiente puede expresarse también en la forma
ω .(t - r/v) = (2.π /T).[t - r/(λ /T)] = 2.π (t/T - r/ λ)
dado que ω =2 π / T y v = λ / T; lo cual permite escribir la ecuación de ondas en función de sus parámetros o constantes características, tales como la amplitud A, el periodo T y la longitud λ .
Y = A.sen 2.π (t/T - r/ λ)
La ecuación de onda recibe también el nombre de función de onda y puede referirse a una perturbación genérica que no consista precisamente en una altura, si se sustituye Y por la letra griega Ψque designa la magnitud de la perturbación. En tal caso, la función de onda toma la forma
Ψ = A.sen 2.π (t/T - r/ λ)
en donde Ψpuede representar la alteración, con el tiempo, de propiedades físicas tan diversas como una densidad, una presión,un campo eléctrico o un campo magnético, por ejemplo, y su propagación por el espacio.

1 comentario:

  1. Hola sólo quiero felicitarlos ya que me gusta muchísimo la información que han publicado enm su blog... te envío mi blog para que tambien lo sigas ok? http://alfredomanriquez.blogspot.com
    http://akican.blogspot.com
    reciban un cordial saludo de su amigo alfredo
    y sobre todo mis felicitaciones ... gracias!!

    ResponderEliminar